大數(shù)據(jù)思維的核心原理
- 來源:中國信息化周報 smarty:if $article.tag?>
- 關鍵字:大數(shù)據(jù)思維,互聯(lián)網 smarty:/if?>
- 發(fā)布時間:2017-01-04 14:36
大數(shù)據(jù)思維是客觀存在,大數(shù)據(jù)思維是新的思維觀。用大數(shù)據(jù)思維方式思考問題、解決問題是當下企業(yè)潮流。大數(shù)據(jù)思維開啟了一次重大的時代轉型。大數(shù)據(jù)思維原理是什么?
數(shù)據(jù)核心原理 從“流程”核心轉變?yōu)?ldquo;數(shù)據(jù)”核心
大數(shù)據(jù)時代,計算模式也發(fā)生了轉變,從“流程”核心轉變?yōu)?ldquo;數(shù)據(jù)”核心。Hadoop體系的分布式計算框架已經是以“數(shù)據(jù)”為核心的范式。非結構化數(shù)據(jù)及分析需求,將改變IT系統(tǒng)的升級方式:從簡單增量到架構變化。大數(shù)據(jù)下的新思維——計算模式的轉變。
例如,IBM將使用以數(shù)據(jù)為中心的設計,目的是降低在超級計算機之間進行大量數(shù)據(jù)交換的必要性。大數(shù)據(jù)下,云計算找到了破繭重生的機會,在存儲和計算上都體現(xiàn)了以數(shù)據(jù)為核心的理念。大數(shù)據(jù)和云計算的關系:云計算為大數(shù)據(jù)提供了有力的工具和途徑,大數(shù)據(jù)為云計算提供了很有價值的用武之地。而大數(shù)據(jù)比云計算更為落地,可有效利用已大量建設的云計算資源,最后加以利用。
科學進步越來越多地由數(shù)據(jù)來推動,海量數(shù)據(jù)給數(shù)據(jù)分析既帶來了機遇,也構成了新的挑戰(zhàn)。大數(shù)據(jù)往往是利用眾多技術和方法,綜合源自多個渠道、不同時間的信息而獲得的。為了應對大數(shù)據(jù)帶來的挑戰(zhàn),我們需要新的統(tǒng)計思路和計算方法。
說明:用數(shù)據(jù)核心思維方式思考問題,解決問題。以數(shù)據(jù)為核心,反映了當下IT產業(yè)的變革,數(shù)據(jù)成為人工智能的基礎,也成為智能化的基礎,數(shù)據(jù)比流程更重要,數(shù)據(jù)庫、記錄數(shù)據(jù)庫,都可開發(fā)出深層次信息。云計算機可以從數(shù)據(jù)庫、記錄數(shù)據(jù)庫中搜索出你是誰,你需要什么,從而推薦給你需要的信息。
數(shù)據(jù)價值原理 由功能是價值轉變?yōu)閿?shù)據(jù)是價值
大數(shù)據(jù)真正有意思的是數(shù)據(jù)變得在線了,這個恰恰是互聯(lián)網的特點。非互聯(lián)網時期的產品,功能一定是它的價值,今天互聯(lián)網的產品,數(shù)據(jù)一定是它的價值。
例如,大數(shù)據(jù)的真正價值在于創(chuàng)造,在于填補無數(shù)個還未實現(xiàn)過的空白。有人把數(shù)據(jù)比喻為蘊藏能量的煤礦,煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數(shù)據(jù)并不在“大”,而在于“有用”,價值含量、挖掘成本比數(shù)量更為重要。不管大數(shù)據(jù)的核心價值是不是預測,但是基于大數(shù)據(jù)形成決策的模式已經為不少的企業(yè)帶來了盈利和聲譽。
數(shù)據(jù)能告訴我們,每一個客戶的消費傾向,他們想要什么,喜歡什么,每個人的需求有哪些區(qū)別,哪些又可以被集合到一起來進行分類。大數(shù)據(jù)是數(shù)據(jù)數(shù)量上的增加,以至于我們能夠實現(xiàn)從量變到質變的過程。舉例來說,這里有一張照片,照片里的人在騎馬,這張照片每一分鐘,每一秒都要拍一張,但隨著處理速度越來越快,從1分鐘一張到1秒鐘1張,突然到1秒鐘10張后,就產生了電影。當數(shù)量的增長實現(xiàn)質變時,就從照片變成了一部電影。
美國有一家創(chuàng)新企業(yè)Decide.com它可以幫助人們做購買決策,告訴消費者什么時候買什么產品,什么時候買最便宜,預測產品的價格趨勢,這家公司背后的驅動力就是大數(shù)據(jù)。他們在全球各大網站上搜集數(shù)以十億計的數(shù)據(jù),然后幫助數(shù)以十萬計的用戶省錢,為他們的采購找到最好的時間,降低交易成本,為終端的消費者帶去更多價值。
在這類模式下,盡管一些零售商的利潤會進一步受擠壓,但從商業(yè)本質上來講,可以把錢更多地放回到消費者的口袋里,讓購物變得更理性,這是依靠大數(shù)據(jù)催生出的一項全新產業(yè)。這家為數(shù)以十萬計的客戶省錢的公司,在幾個星期前,被eBay以高價收購。
再舉一個例子,SWIFT是全球最大的支付平臺,在該平臺上的每一筆交易都可以進行大數(shù)據(jù)的分析,他們可以預測一個經濟體的健康性和增長性。比如,該公司現(xiàn)在為全球性客戶提供經濟指數(shù),這又是一個大數(shù)據(jù)服務。定制化服務的關鍵是數(shù)據(jù)。《大數(shù)據(jù)時代》的作者維克托·邁爾·舍恩伯格認為,大量的數(shù)據(jù)能夠讓傳統(tǒng)行業(yè)更好地了解客戶需求,提供個性化的服務。
說明:用數(shù)據(jù)價值思維方式思考問題,解決問題。信息總量的變化導致了信息形態(tài)的變化,量變引發(fā)了質變,最先經歷信息爆炸的學科,如天文學和基因學,創(chuàng)造出了“大數(shù)據(jù)”這個概念。如今,這個概念幾乎應用到了所有人類致力于發(fā)展的領域中。從功能為價值轉變?yōu)閿?shù)據(jù)為價值,說明數(shù)據(jù)和大數(shù)據(jù)的價值在擴大,數(shù)據(jù)為“王”的時代出現(xiàn)了。數(shù)據(jù)被解釋是信息,信息常識化是知識,所以說數(shù)據(jù)解釋、數(shù)據(jù)分析能產生價值。
全樣本原理 從抽樣轉變?yōu)樾枰繑?shù)據(jù)樣本
需要全部數(shù)據(jù)樣本而不是抽樣,你不知道的事情比你知道的事情更重要,但如果現(xiàn)在數(shù)據(jù)足夠多,它會讓人能夠看得見、摸得著規(guī)律。數(shù)據(jù)這么大、這么多,所以人們覺得有足夠的能力把握未來,對不確定狀態(tài)的一種判斷,從而做出自己的決定。這些東西我們聽起來都是非常原始的,但是實際上背后的思維方式,和我們今天所講的大數(shù)據(jù)是非常像的。
舉例:在大數(shù)據(jù)時代,無論是商家還是信息的搜集者,會比我們自己更知道你可能會想干什么。現(xiàn)在的數(shù)據(jù)還沒有被真正挖掘,如果真正挖掘的話,通過信用卡消費的記錄,可以成功預測未來5年內的情況。統(tǒng)計學里頭最基本的一個概念就是,全部樣本才能找出規(guī)律。為什么能夠找出行為規(guī)律?一個更深層的概念是人和人是一樣的,如果是一個人特例出來,可能很有個性,但當人口樣本數(shù)量足夠大時,就會發(fā)現(xiàn)其實每個人都是一模一樣的。
說明:用全數(shù)據(jù)樣本思維方式思考問題,解決問題。從抽樣中得到的結論總是有水分的,而全部樣本中得到的結論水分就很少,大數(shù)據(jù)越大,真實性也就越大,因為大數(shù)據(jù)包含了全部的信息。
關注效率原理 由關注精確度轉變?yōu)殛P注效率
關注效率而不是精確度,大數(shù)據(jù)標志著人類在尋求量化和認識世界的道路上前進了一大步,過去不可計量、存儲、分析和共享的很多東西都被數(shù)據(jù)化了,擁有大量的數(shù)據(jù)和更多不那么精確的數(shù)據(jù)為我們理解世界打開了一扇新的大門。大數(shù)據(jù)能提高生產效率和銷售效率,原因是大數(shù)據(jù)能夠讓我們知道市場的需要,人的消費需要。大數(shù)據(jù)讓企業(yè)的決策更科學,由關注精確度轉變?yōu)殛P注效率的提高,大數(shù)據(jù)分析能提高企業(yè)的效率。
例如,在互聯(lián)網大數(shù)據(jù)時代,企業(yè)產品迭代的速度正在加快。三星公司、小米手機制造商半年就推出一代新智能手機。利用互聯(lián)網、大數(shù)據(jù)提高企業(yè)效率的趨勢下,快速就是效率、預測就是效率、預見就是效率、變革就是效率、創(chuàng)新就是效率、應用就是效率。
競爭是企業(yè)的動力,而效率是企業(yè)的生命,效率低與效率高是衡量企來成敗的關鍵。一般來講,投入與產出比是效率,追求高效率也就是追求高價值。手工、機器、自動機器、智能機器之間效率是不同的,智能機器效率更高,已能代替人的思維勞動。智能機器核心是大數(shù)據(jù)制動,而大數(shù)據(jù)制動的速度更快。在快速變化的市場,快速預測、快速決策、快速創(chuàng)新、快速定制、快速生產、快速上市成為企業(yè)行動的準則,也就是說,速度就是價值,效率就是價值,而這一切離不開大數(shù)據(jù)思維。
說明:用關注效率思維方式思考問題,解決問題。大數(shù)據(jù)思維有點像混沌思維,確定與不確定交織在一起,過去那種一元思維結果,已被二元思維結果取代。過去尋求精確度,現(xiàn)在尋求高效率;過去尋求因果性,現(xiàn)在尋求相關性;過去尋找確定性,現(xiàn)在尋找概率性,對不精確的數(shù)據(jù)結果已能容忍。只要大數(shù)據(jù)分析指出可能性,就會有相應的結果,從而為企業(yè)快速決策、快速動作、創(chuàng)占先機提高了效率。
■本報記者 陳曲
